

Advanced Autonomous Robotics from Research to Applications and Industry 4.0

Libor Přeučil

e-mail: preucil@ciirc.cvut.cz

Intelligent and Mobile Robotics (IMR) and Center for Advanced Field Robotics (CAFR)

Czech Institute of Informatics, Robotics nad Cybernetics (CIIRC)

Czech Technical University in Prague

Intelligent and Mobile Robotics laboratory, since 1993, http://imr.ciirc.cvut.cz

Focus on **basic and applied research** in the fields of:

- Autonomy for mobile robots of UGV and UAV type in general, i.e.:
- Robot navigation for indoor and outdoor
- Autonomy for human-oriented and uncontrolled environments with uncertainty, high complexity and for infrastructure-free cases
- Advanced planning and scheduling for robotics
- Swarm and collective robotics, HRI and co-work, hybrid human-robot systems

With application outcomes through Center for Advanced Field Robotics (CAFR), since 2012, http://cafr.cz

Strong links to other CZ robotic labs and industry

Why autonomous systems?

- Ability to handle uncertainty
 unexpected situations resolution, handles
 incompleteness of the environment description, its'
 structure and constraints
- Adaptation to varying conditions, learning and system scalability readiness to adopt to task complexity, scalability, runtime task and performance optimization
- Open decentralized (on-board) control and operation in communication inaccessibility system control independent on communication, temporary and autonomy long-term autonomy
- Human-oriented environment capable
 high structural complexity, variation over time,
 indoor/outdoor and natural/urban/production kinds
- No need for environment infrastructures
 no external support systems for navigation, very
 flexible and ready to handle variations in the
 workspace

Success stories, examples

- Safe automated storage and logistic systems (EC project Horizon 2020, SafeLog): Advanced solution to human-robot safety and collaboration in logistic setup, advanced planning and scheduling for logistic problems
- UGV autonomy for complex-structured and infrastructure-free environments (VOP CZ, Taros): Autonomous navigation of UGV based on onboard sensors (vision) in any-kind environments. Localization, mapping and path planning for transportation, surveillance and inspection and exploration tasks.
- Smart bin-picking (Škoda Auto, B3P):
 Advanced sensory data processing, development and prototyping of robust bin-picking and general manipulation of objects.

Next generation safe logistics

Project H2020 SafeLog: Advanced safety and task planning for automated logistic systems

- Allows safe human entrance and collaboration in the warehouse in operation
- Novel approaches to "anytime" approx. solutions of NP-complete planning problems

Advanced and safe logistics

The safe logistics concept: **Human-robot collaboration/coexistence**

Planning for complex problems

Efficient logistic concept: Steady runtime optimization

- Everlasting optimization of the fleet scheduling& planning in a warehouse with an in mission human
- Order of the problem, NP-hard
 10.000+ warehouse positions
 1.000+ transport robots
- Update of an "any time"
 approximate solution required in
 real-time (within 1 sec)

Autonomy and navigation

TAROS: Autonomous navigation of unmanned mobile robot in complex and uncontrolled (unknown/varying) and infrastructure free environments (for VOP CZ)

- Relies on observable environment features
- Active and passive sensing (vision), RGB camera and/or depth from LIDAR)

Major features of the solution:

- No infrastructure needed (GPS-dark areas, no navigation markers, or other instalations)
- Extremely robust to environment look variations
- Provides collision-free navigation in between given locations and path planning and scheduling

Prospective application field of the technology:

- Autonomous transportation systems for uncontrolled environments (indoor and outdoor.
- Autonomous inspection systems (security and safety systems, production and technology surveillance, etc.
- Servicing of variable areas (storage spaces, warehouses, public spaces, malls, etc.)

TAROS6x6: Vision-based autonomy for infrastructure-free spaces

the Mule scenario (for VOP CZ)

Project: Smart bin-picking (for Škoda Auto a.s.)

- Picking of unevenly laid parts from transportation bins, feeding assembly lines
- High precision vision-based manipulator guidance in 3D and pick-planner system.
- Novel approach to image processing using NN and DL brings high robustness and variability of the solution
- **Optimized costs**

Thank you for your attention Questions?

Contact: Libor Přeučil, <u>preucil@ciirc.cvut.cz</u>

Head
Intelligent and Mobile (IMR) and
Center for Advanced Field Robotics (CAFR)
Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague
http://cafr.cz
http://cafr.cz

file:///Users/preucil/Desktop/I4.0 workshop/ICP VOP2016 sestrih lokalizace.webm